Skip to main content

From Friezes to Quasicrystals: A History of Symmetry Groups

Handbook of the History and Philosophy of Mathematical Practice

Abstract

Even if, since many thousands of years, humans were fascinated by symmetry, which is reflected in many preserved ornaments on buildings, paintings, pottery, etc., the mathematical study of symmetrical patterns is just a few hundred years old. In fact, until the nineteenth century, when it received an impulse from crystallography, no systematical approaches were developed. In this chapter, we follow the history of (Euclidean) symmetry from its first appearances and connections with art, over geometric classifications by nineteenth-century crystallographers, the coalescence of this crystallographic-geometrical approach with theory of groups in the second part of the nineteenth century, until various twentieth-century generalizations to symmetry groups in higher dimensions, magnetic, and colored groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    J’appelerai polyèdres symétriques deux polyèdres qui, ayant une base commune, sont construits semblablement, l’un au-dessus du plan de celte base, l’autre au-dessous avec celte condition que les sommets des angles solides homologues soient situes a egales distances du plan de la base, sur une meme droite perpendiculaire à ce plan.

  2. 2.

    Eine wissenschaftliche Kenntniss von den Formen der Krystalle, die allen Anforderungen genügt, setzt voraus, dass man mit den allgemeinen Principien vertraut sey, welche die Gestaltenlehre bei Untersuchungen der verschiedenen möglichen Gestalten überhaupt zu befolgen hat. Da diese Principien jedoch in Werken über reine Mathematik noch nicht so bestimmt aus gesprochen sind, indem die allgemeine Gestaltenlehre in der Ausdehnung, wie sie jetzt vorliegt, eine noch jugendliche Wissenschaft ist, so muß sie hier erst entwickelt werden, um so dann die Anwendung derselben auf die Krystallgestalt folgen zu lassen.

  3. 3.

    Some of the groups listed above are not only isomorphic, but the same. For example, C1h = C1v and D1h = C2v.

  4. 4.

    Le groupe forme par les mouvements cher de cette propriete earacteristique, quo si M’ et M” sont deux mouvements quelconques faisant partie de ce groupe, M’M” en fera partie.

  5. 5.

    Eine besonders einfache Aufgabe ist die folgende: es sind alle verschiedenen Strukturen der Symmetrie einer Bordüre (Band, Fries) aufzuzählen; es gibt deren sieben.

  6. 6.

    Es ist dies das Problem der Erweiterung der 17 Nigglischen zweidimensionalen Ebenengruppen zu den 80 dreidimensionalen, so, wie es sich jetzt darum handelt, die 230 dreidimensionalen R3-Gruppen zur Gesamtheit der vierdimensionalen auszubauen.

  7. 7.

    Les éléments de symétrie des causes doivent se retrouver dans les effets produits.

References

  • Alexander E, Hermann K (1929) XIII. Die 80 zweidimensionalen Raumgruppen. Z Krist 70:328–345

    Google Scholar 

  • Anglin WS, Lambek J (1995) The heritage of Thales. Springer, New York

    Book  MATH  Google Scholar 

  • Artin M (1991) Algebra. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Bamberg J, Cairns G, Kilminster D (2003) The crystallographic restriction, permutations, and Goldbach’s conjecture. Am Math Monthly 110:202–209. https://doi.org/10.1080/00029890.2003.11919956

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow W (1894) Über die Geometrischen Eigenschaften homogener starrer Strukturen und ihre Anwendung auf Krystalle. Zeitschrift für Krystallographie und Minerologie 23:1–63

    Google Scholar 

  • Barlow W (1901) I. Crystal symmetry. The actual basis of the thirty-two classes. Philos Mag 1:1–36

    Article  MATH  Google Scholar 

  • Belcastro SM, Yackel C (2011) Crafting by concepts. AK Peters, Natick

    MATH  Google Scholar 

  • Belov NV (1956) On one-dimensional infinite crystallographic groups. Kristallografiya 1:474–476

    Google Scholar 

  • Bieberbach L (1910) Über die Bewegungsgruppen des n-dimensionalen euclidischen Raumes mit einem endlichen Fundamentalbereich. Gött Nachr:75–84

    Google Scholar 

  • Boisen MB, Gibbs GV (1976) A derivation of the 32 crystallographic point groups using elementary group theory. Am Min 61:145–165

    Google Scholar 

  • Bradley CJ, Cracknell AP (1972) The mathematical theory of symmetry in solids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Bravais A (1849a) Note sur les polyèdres symétriques de la géométrie. J de Mathematique 14:137–140

    Google Scholar 

  • Bravais A (1849b) Mémoire sur les polyèdres de forme symétrique. J de Mathematique 14:141–180

    Google Scholar 

  • Bravais A (1850) Mémoire sur les systèmes formés par des points distribués régulièrement sur un plan ou dans l’espace. J École Polytechnique 19:1–128

    Google Scholar 

  • Brown H, Bulow R, Neubüser J, Wondratschek H, Zassenhaus H (1978) Crystallographic groups of four-dimensional space. Wiley, New York

    MATH  Google Scholar 

  • Brückler FM (2017) Geschichte der Mathematik kompakt – Das Wichtigste aus Arithmetik, Geometrie, Algebra, Zahlentheorie und Logik. Springer Spektrum, Berlin

    Book  MATH  Google Scholar 

  • Brückler FM (2019) Mathematische Grundlagen der Kristallographie. Springer Spektrum, Berlin

    Book  MATH  Google Scholar 

  • Burckhardt JJ (1967) Zur Geschichte der Entdeckung der 230 Raumgruppen. Arch Hist Exact Sci 4:235–246

    Article  MathSciNet  MATH  Google Scholar 

  • Burckhardt JJ (1971) Der Briefwechsel von E. S. von Fedorow und A. Schoenflies, 1889–1908. Archive Hist Exact Sci 7:91–141

    Article  MathSciNet  MATH  Google Scholar 

  • Burckhardt JJ (1988) Die Symmetrie der Kristalle. Springer AG, Basel

    Book  MATH  Google Scholar 

  • Burke JG (1966) Origins of the science of crystals. University of California Press, Berkeley and Los Angeles

    Google Scholar 

  • Capeller MA (1723) Prodromus crystallographiae de crystallis improprie sic dictis commentarium. Typis Henrici Rennwardi Wyssing, Lucerne

    Google Scholar 

  • Cid C, Schulz T (2001) Computation of five- and six-dimensional Bieberbach groups. Exp Math 10:109–115

    Article  MathSciNet  MATH  Google Scholar 

  • Conway JH, Burgiel H, Goodman-Strauss C (2008) The symmetries of things. AK Peters, Wellesley

    MATH  Google Scholar 

  • Conway JH, Smith DA (2003) On quaternions and octonions: their geometry, arithmetic, and symmetry. AK Peters, Natick

    Book  MATH  Google Scholar 

  • Coxeter HSM (1934) Discrete groups generated by reflections. Ann Math 35:588–621

    Article  MathSciNet  MATH  Google Scholar 

  • Coxeter HSM (1935) The complete enumeration of finite groups of the form \( {r}_i^2={\left({r}_i{r}_j\right)}^{k_{ij}}=1 \). J London Math Soc 10:21–25

    Google Scholar 

  • Coxeter HSM (1948) Regular polytopes. Methuen, London

    MATH  Google Scholar 

  • Coxeter HSM (1969) Introduction to geometry. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Cromwell PR (1997) Polyhedra. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  • Curie MP (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J de Phys III:393–415

    MATH  Google Scholar 

  • Damjanović M, Milošević I (2010) Line groups in physics. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Downward M (2011) Crystallographic point groups in five dimensions. Z Kristallogr 226:32–39

    Article  Google Scholar 

  • Fyodorov YS (1890) Simmetriya pravilnykh sistem figur. Tipografiia A. Iakovsona, St. Petersburg

    Google Scholar 

  • Fyodorov YS (1891) Simmetriya pravilnykh sistem figur. Zapiski St Petersburg Mineral Obsc 2nd series 28:1–146

    Google Scholar 

  • Frankenheim ML (1826) Crystallonomische Aufsätze. Isis(Jena) 19:497–515. 542–565

    Google Scholar 

  • Goodman R (2004) Alice through looking glass after looking glass: the mathematics of mirrors and kaleidoscopes. Am Math Mon 111:281–298

    Article  MathSciNet  MATH  Google Scholar 

  • Goursat ME (1889) Sur les substitutions orthogonales et les divisions régulières de l’espace. Annales scientifiques de l’ÉNS 6:9–102

    MATH  Google Scholar 

  • Grove LC (1997) Grups and characters. John Wiley & Sons Inc, New York

    Book  Google Scholar 

  • Grünbaum B (2006) What symmetry groups are present in the Alhambra? Notices AMS 53:670–673

    MathSciNet  MATH  Google Scholar 

  • Grünbaum B, Grünbaum Z, Shephard GC (1986) Symmetry in Moorish and other ornaments. Comput Math with Appl 12B:641–653

    Article  MathSciNet  Google Scholar 

  • Grünbaum B, Shephard GC (1987) Tilings and patterns. WH Freeman, New York

    MATH  Google Scholar 

  • Hahn T (ed) (2005) International tables for crystallography, Volume A, Space-group symmetry, 5th edn. Springer, Dordrecht

    Google Scholar 

  • Haklay G, Gopher A (2020) Geometry and architectural planning at Göbekli Tepe, Turkey. Camb Archaeol J 30:343–357. https://doi.org/10.1017/S0959774319000660

    Article  Google Scholar 

  • Hargittai I, Lengyel G (1985) The seventeen two-dimensional space-group symmetries in Hungarian needlework. J Chem Educ 62:35–36

    Article  Google Scholar 

  • Haüy M (1815) Première suite du mémoire sur la loi de symétrie. Mem Mus Hist Nat I:206–225

    Google Scholar 

  • Heesch H (1929) Zur Strukturtheorie der Ebenen Symmetriegruppen. Z Kristall 71:95–102

    Article  MATH  Google Scholar 

  • Heesch H (1930a) XIX. Zur systematischen Strukturtheorie. III. Über die vierdimensionalen Gruppen des dreidimensionalen Raumes. Z Krist 73:325–345

    MATH  Google Scholar 

  • Heesch H (1930b) XX. Zur systematischen Strukturtheorie. IV. Über die Symmetrien zweiter Art in Kontinuen und Semidiskontinuen. Z Krist 73:346–356

    MATH  Google Scholar 

  • Hermann C (1929) XVII. Zur systematischen Strukturtheorie. III. Ketten- und Netzgruppen. Z Krist 69:250–270

    Google Scholar 

  • Hermann C (1949) Kristallographie in Räumen beliebiger Dimensionszahl. I. Die Symmetrieoperationen. Acta Cryst 2:139–145

    Article  MathSciNet  Google Scholar 

  • Hessel JFC (1830) Krystall. In: Brandes HW, Gmelin L, Horner J, Muncke GW, Pfaff CH (eds) Johann Samuel Traugott Gehler's Physikalisches Wörterbuch, Abtheilung 2: I bis K, vol Band 5. EB Schwickert, Leipzig, pp 1023–1340

    Google Scholar 

  • Hilbert D (1900) Mathematische Probleme. Nachr K Ges Wiss Göttingen. Math-Phys Klasse (Göttinger Nachrichten) 3:253–297

    Google Scholar 

  • Hiller H (1985) The crystallographic restriction in higher dimensions. Acta Cryst A41:541–544

    Article  MathSciNet  MATH  Google Scholar 

  • Hilton H (1963) Mathematical crystallography and the theory of groups of movements (unabridged and corrected republication of the 1903 original). Dover Publ Inc, New York

    Google Scholar 

  • Hon G (2005) Kant vs. Legendre on symmetry: Mirror images in philosophy and mathematics. Centaurus 47:283–297. https://doi.org/10.1111/j.1600-0498.2005.00027.x

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley AC (1951) Finite rotation groups and crystal classes in four dimensions. Proc Camb Phil Soc 47:650–661

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley AC, Neubuser J, Wondratschek H (1967) Crystal classes of four-dimensional space R4. Acta Cryst 22:605

    Article  Google Scholar 

  • Jablan SV (1986) A new method of generating plane groups of simple and multiple antisymmetry. Acta Cryst A42:209–212

    Article  MathSciNet  MATH  Google Scholar 

  • Jablan SV (1994) Proportional colored symmetry. Acta Cryst A50:403–405

    Article  MATH  Google Scholar 

  • Jablan SV (2002) Symmetry, ornament and modularity. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  • Jablan SV (2007) Farbgruppen and Their Place in the History of Colored Symmetry. In: Proccedings of the conference “Forma y Simetría: Arte y Ciencia Congreso”, Buenos Aires, 2007

    Google Scholar 

  • Janssen T, Birman JL, Koptsik VA, Senechal M, Weigel D, Yamamoto A, Abrahams SC, Hahn T (1999) Report of a subcommittee on the nomenclature of n-dimensional crystallography. I. Symbols for point-group transformations, families, systems and geometric crystal classes. Acta Cryst A55:761–782. https://doi.org/10.1107/S0108767398018418

    Article  Google Scholar 

  • Janssen T, Birman JL, Dénoyer F, Koptsik VA, Verger-Gaugry JL, Weigel D, Yamamoto A, Abrahams SC, Kopsky V (2002) Report of a subcommittee on the nomenclature of n-dimensional crystallography. II. Symbols for arithmetic crystal classes, Bravais classes and space groups. Acta Cryst A58:605–621. https://doi.org/10.1107/S010876730201379X

    Article  Google Scholar 

  • Jordan C (1869) Memoire sur les groupes de mouvements. Annali di Matematica 2(167–215):322–345

    Google Scholar 

  • Jordan C (1870) Traité des substitutions et des équations algébriques. Gauthier-Villars, Paris

    MATH  Google Scholar 

  • Kepler J (1611) Strena seu de Niue sexangula. Godefridum Tampach, Frankfurt am Main

    Google Scholar 

  • Kepler J (1619) Harmonices mundi. Sumptibus Godofredi Tampachii Bibl Francof, Linz

    Google Scholar 

  • Kleiner I (1986) The evolution of group theory: a brief survey. Math Mag 59:195–215

    Article  MathSciNet  MATH  Google Scholar 

  • Kosmann-Schwarzbach Y (2018) The Noether theorems. Invariance and conservation laws in the twentieth century. Springer, New York

    MATH  Google Scholar 

  • Krishnamurty TSG, Gopalakrishnamurty O (1969) Magnetic symmetry and limiting groups. Acta Cryst A25:333–334

    Article  Google Scholar 

  • Kubbinga H (2012) Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids. Z Kristallogr 227:1–26

    Article  MATH  Google Scholar 

  • Laigo GR, Gebreyohannes HM, Al Khamisi FMH (2014) Symmetry groups of Islamic patterns at the Sultan Qaboos Grand Mosque. In: Greenfield G, Hart G, Sarhangi R (eds) Bridges Seoul conference proceedings 2014. Tessellations Publ, Phoenix (AZ), pp 183–190. Retrieved from https://archive.bridgesmathart.org/2014/

    Google Scholar 

  • Lalena JN (2006) From quartz to quasicrystals: probing nature’s geometric patterns in crystalline substances. Cryst Rev 12:125–180

    Article  Google Scholar 

  • Lehrstuhl B für Mathematik Aachen (2023) The CARAT Homepage. https://lbfm-rwth.github.io/carat/doc/index.html. Accessed 20 Mar 2023

  • Lifshitz R (1996) The symmetry of quasiperiodic crystals. Physica A 232:633–647

    Article  MathSciNet  Google Scholar 

  • Lifshitz R (1997) Theory of color symmetry for periodic and quasiperiodic crystals. Rev Mod Phys 69:1181–1218

    Article  MathSciNet  MATH  Google Scholar 

  • Lifshitz R (2005) Magnetic point groups and space groups. In: Bassani F, Liedl GL, Wyder P (eds) Encyclopedia of condensed matter physics. Elsevier, pp 219–226. https://doi.org/10.1016/B0-12-369401-9/00748-8

    Chapter  Google Scholar 

  • Lima-de-Faria J (ed) (1990) Historical atlas of crystallography. International Union of Crystallography and Kluwer Academic Publishers, Dordrecht, London and New York

    MATH  Google Scholar 

  • Litvin DB (2005) Tables of properties of magnetic subperiodic groups. Acta Cryst A61:382–385

    Article  MATH  Google Scholar 

  • Litvin DB (2016) Magnetic subperiodic groups and magnetic space groups. In: Arroyo MI (ed) International tables for crystallography, volume a, space-group symmetry (2nd online edition). Retrieved from: https://it.iucr.org/Ac/

  • Lungu A (2002) Zamorzaev’s P-symmetry and its further generalizations. In: Communications from the conference: International seminar on discrete geometry (dedicated to the 75th birthday of Professor AM Zamorzaev) 2002, Chisinau, p 45–53. Retrieved from https://www.researchgate.net/publication/341966106_ZAMORZAEV’S_P_-SYMMETRY_AND_ITS_FURTHER_GENERALIZATIONS_1. Accessed 25 Mar 2023

  • MacKay AL, Pawley GS (1962) Bravais lattices in four-dimensional space. Acta Cryst 16:11–19

    Article  Google Scholar 

  • Molčanov K, Stilinović V (2014) Chemical crystallography before X-ray diffraction. Angew Chem Int Ed 53:638–652

    Article  Google Scholar 

  • Nelson SA (2011) Crystal form, zones, crystal habit. In: Earth & environmental sciences 2110 – Mineralogy. https://www2.tulane.edu/~sanelson/eens211/forms_zones_habit.htm. Accessed 22 Mar 2023

  • Nespolo M, Aroyo MI, Souvignier B (2018) Crystallographic shelves: space-group hierarchy explained. J Appl Crys 51:1481–1491

    Article  Google Scholar 

  • Neubüser J, Souvignier B, Wondratschek H (2002) Corrections to crystallographic groups of four-dimensional space by Brown et al. 1978. [New York: Wiley and Sons]. Acta Cryst A58:301

    Article  MATH  Google Scholar 

  • Niggli P (1924) Die regelmäßige Punktverteilung längs einer Geraden in einer Ebene (Symmetrie von Bordürenmuster). Z Kristall 60:283–298

    Article  Google Scholar 

  • Opgenorth J, Plesken W, Schulz T (1998) Crystallographic algorithms and tables. Acta Cryst A54:517–531. https://doi.org/10.1107/S010876739701547X

    Article  MathSciNet  MATH  Google Scholar 

  • Pabst A (1962) The 179 two-sided, two-colored, band groups and their relations. Z Krist 117:128–134

    Article  Google Scholar 

  • Palistrant AF (2000) On the rosette, tablet, and hypertablet groups of P-symmetries and their relation to the groups of multidimensional symmetries. Cryst Rep 45:887–893

    Article  Google Scholar 

  • Palistrant AF (2005) On a number of some categories of the limiting groups of multidimensional plane crystallographic point groups of symmetry. Cryst Reports 50:7–15

    Article  Google Scholar 

  • Palistrant AF, Jablan SV (1994) Limiting groups of multidimensional plane-point groups. FILOMAT 8:41–55

    MathSciNet  MATH  Google Scholar 

  • Plesken W (1981) Bravais groups in low dimensions. Match 10:97–119

    MathSciNet  MATH  Google Scholar 

  • Plesken W, Schulz T (2000) Counting crystallographic groups in low dimensions. Exp Math 9:407–411

    Article  MathSciNet  MATH  Google Scholar 

  • Pólya G (1924) Über die Analogie der Kristallsymmetrie in der Ebene. Z Kristall 60:278–282

    Article  MATH  Google Scholar 

  • Reynolds M (2008) The octagon in Leonardo’s drawings. Nexus Netw J 10:51–76. https://doi.org/10.1007/s00004-007-0056-8

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers AF (1912) The validity of the law of rational indices, and the analogy between the fundamental laws of chemistry and crystallography. Proc Am Phil Soc 51:103–117

    Google Scholar 

  • Romé de l’Isle J-BL (1783) Cristallographie. Chez Didot jeune, Paris

    Google Scholar 

  • Rønning F (2009) Islamic patterns and symmetry groups. In: Ernest P (ed) Philosophy of mathematics education journal 24 – Special issue on mathematics and art. https://education.exeter.ac.uk/research/centres/stem/publications/pmej/pome24/index.htm

  • Ryan PY (1986) Euclidean and non-Euclidean geometry: an analytic approach. Cambridge Univ Press, Cambridge

    Book  MATH  Google Scholar 

  • Saurel P (1911) On the classification of crystals. Bull Amer Math Soc 17:389–397

    Article  MathSciNet  Google Scholar 

  • Schechtmann D, Blech I, Gratias D, Cahn JW (1984) Mettalic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1954

    Article  Google Scholar 

  • Schilling K (2019) Kristall2000 (ver. 09-19-21). Speyer

    Google Scholar 

  • Schoenflies A (1891) Kristallsysteme und Kristallstructur. BG Teubner, Leipzig

    Google Scholar 

  • Scholz E (1989) The rise of symmetry concepts in the atomistic and dynamistic schools of crystallography, 1815–1830. Revue d’histoire des sciences 42:109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Schuh CP (2007) Mineralogy & crystallography. On the history of these sciences from beginnings through 1919. Tucson (Arizona). Retrieved from https://archive.org/details/History_Mineralogy_2007/mode/2up

  • Schwarzenberger RL (1984) Colour symmetry. Bull Lond Math Soc 16:209–240

    Article  MathSciNet  MATH  Google Scholar 

  • Senechal M (1983) Coloring symmetrical objects symmetrically. Math Mag 56:3–16

    Article  MathSciNet  MATH  Google Scholar 

  • Senechal M (1988) Color symmetry. Comput Math Appl 16:545–553

    Article  MathSciNet  MATH  Google Scholar 

  • Shafranovskii II (1975) 14.10. Kepler’s crystallographic ideas and his tract “the six-cornered snowflake”. Vistas Astron 18:861–876. https://doi.org/10.1016/0083-6656(75)90181-6

    Article  Google Scholar 

  • Shubnikov AV (1930) Über die Symmetrie des Semikontinuums. Z Krist 73:430–433

    MATH  Google Scholar 

  • Shubnikov AV (1951) Simmetriya i antisimmetria konechnykh figure. AN SSSR, Moscow

    Google Scholar 

  • Shubnikov AV (1988a) On the works of Pierre Curie on symmetry. Comput Math Applic 16:357–364

    Article  MathSciNet  Google Scholar 

  • Shubnikov AV (1988b) Antisymmetry of textures. Comput Math Appl 16:373–377

    Article  MathSciNet  Google Scholar 

  • Sibley TQ (2015) Thinking geometrically. MAA, Washington DC

    Book  MATH  Google Scholar 

  • Sohncke L (1874) 1874. Die regelmässigen ebenen Punktsysteme von unbegrenzter Ausdehnung. J Reine Angew Math 77:47–101

    MathSciNet  MATH  Google Scholar 

  • Sohncke L (1879) Entwickelung einer Theorie der Krystallstruktur. B G Teubner, Leipzig

    Google Scholar 

  • Souvignier B (2003) Enantiomorphism of crystallographic groups in higher dimensions with results in dimensions up to 6. Acta Cryst A59:210–220

    Article  MathSciNet  MATH  Google Scholar 

  • Souvignier B (2006) The four-dimensional magnetic point and space groups. Z Kristallogr 221:77–82

    Article  MathSciNet  MATH  Google Scholar 

  • Speiser A (1927) Die Theorie der Gruppen von endlicher Ordnung, mit Anwendungen auf algebraische Zahlen und Gleichungen sowie auf die Kristallographie, 2. Auflage edn. Springer Verlag, Berlin

    MATH  Google Scholar 

  • Steurer W (2018) Quasicrystals: what do we know? What do we want to know? What can we know? Acta Cryst A74:1–11

    MathSciNet  MATH  Google Scholar 

  • Stilinović V, Brückler FM (2012) Kvazikristali – otkriće, struktura i svojstva. Kem Ind 61:349–359

    Google Scholar 

  • Streitwolf H-W (1967) Gruppentheorie in der Festkörperphysik. Akademische Verlagsgesellschaft Geest & Portig K-G, Leipzig

    MATH  Google Scholar 

  • Tavger BA, Zaitsev VM (1956) Magnetic symmetry of crystals. JETP 30:564–568

    MATH  Google Scholar 

  • Threlfall W, Seifert H (1931) Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes. Math Annalen 104:1–70

    Article  MathSciNet  MATH  Google Scholar 

  • Vaidyanathaswamy R (1928) Integer-roots of the unit matrix. J London Math Soc 3:121–124

    Article  MathSciNet  MATH  Google Scholar 

  • Van der Waerden BL (1985) A history of algebra: from al-Khwarizmi to Emmy Noether. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Van der Waerden BL, Burckhardt JJ (1961) Farbgruppen. Z Krist 115:231–234

    Article  Google Scholar 

  • Veysseyre R, Veysseyre H (2002) Crystallographic point groups of five-dimensional space. 1. Their elements and their subgroups. Acta Cryst A58:429–433

    Article  MathSciNet  MATH  Google Scholar 

  • Veysseyre R, Weigel D, Phana D, Veysseyre H (2002) Crystallographic point groups of five-dimensional space. 2. Their geometrical symbols. Acta Cryst A58:32–39

    MathSciNet  MATH  Google Scholar 

  • Vince A (1997) Periodicity, quasiperiodicity, and Bieberbach’s theorem on crystallographic groups. Am Math Monthly 104:27–35

    Article  MathSciNet  MATH  Google Scholar 

  • Weber L (1929) XII. Die Symmetrie homogener ebener Punktsysteme. Z Krist 70–328

    Google Scholar 

  • Werner AG (1774) Von den äusserlichen Kennzeichen der Fossilien. Siegfried Lebrecht Crusius, Leipzig

    Google Scholar 

  • Weyl H (1952) Symmetry. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Wilkie HC (1966) On non-Euclidean crystallographic groups. Math Z 91:87–102

    Article  MathSciNet  MATH  Google Scholar 

  • Wills AS (2017) A historical introduction to the symmetries of magnetic structures. Part 1. Early quantum theory, neutron powder diffraction and the coloured space groups. Powder Diffract 32:148–155

    Article  Google Scholar 

  • Whitlock HP (1934) A century of crystallography. Am Mineral 19:93–100

    Google Scholar 

  • Yackel C (2012) Teaching temari: geometrically embroidered spheres in the classroom. In: Bosch R, McKenna D, Sarhangi R (eds) Bridges Towson conference proceedings 2012. Tessellations Publ, Phoenix (AZ), pp 563–566. Retrieved from https://archive.bridgesmathart.org/2012/

    Google Scholar 

  • Zamorzaev AM (1988) Generalized antisymmetry. In: Hargittai I, Vainshtein BK, Udalova VV, Rodin EY (eds) Crystal symmetries. Shubnikov centennial papers. Pergamon Press, Oxford, pp 555–562

    Chapter  Google Scholar 

  • Zassenhaus H (1948) Über einen Algorithmus zur Bestimmung der Raumgruppen. Comm Math Helvetici 21:117–141

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franka Miriam Brückler .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brückler, F.M., Stilinović, V. (2023). From Friezes to Quasicrystals: A History of Symmetry Groups. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_132-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_132-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    From Friezes to Quasicrystals: A History of Symmetry Groups
    Published:
    21 November 2023

    DOI: https://doi.org/10.1007/978-3-030-19071-2_132-2

  2. Original

    From Friezes to Quasicrystals: A History of Symmetry Groups
    Published:
    12 September 2023

    DOI: https://doi.org/10.1007/978-3-030-19071-2_132-1